

Ottawa Traffic Application

COMP 4905 - Computer Science Honours Project

Final Report

Carleton University

Author: Fahad Tariq

Student ID: 100907078

Supervisor: Dr. Dwight Deugo

August 18th, 2015

Table of Contents

i. List of Figures ... 3

ii. List of Tables .. 3

iii. Abstract .. 4

1. Introduction .. 5

1.1 Problem ... 5

1.2 Motivation ... 5

1.3 Goals ... 6

1.4 Objectives.. 6

2. Background ... 7

2.1 Project Scope .. 9

3. Approach ... 10

3.1 Overview ... 10

3.2 Architecture and System Design ... 11

3.2.1 Overview .. 11

3.2.2 High-Level Subsystem Decomposition ... 11

3.2.3 Detailed Subsystem Decomposition .. 12

3.2.4 Application Architecture and Design decisions ... 13

4. Results/Validation ... 15

4.1 Evaluation of Project Proposal Objectives .. 15

4.1.1 Objective #1 Results/Evaluation .. 16

4.1.2 Objective #2 Results/Evaluation .. 16

4.1.3 Objective #3 Results/Evaluation .. 17

4.1.4 Objective #4 Results/Evaluation .. 18

4.1.5 Objective #5 Results/Evaluation .. 19

4.2 Results/Self-Evaluation of Application .. 19

4.3 Validation & Application Screens .. 20

5. Conclusion ... 26

5.1 Future Work .. 26

6. Software & Resources Utilized .. 28

7. References .. 29

i. List of Figures

Figure 1 - High-level Subsystem Diagram ... 11

Figure 2- Detailed Subsystem Diagram ... 12

Figure 3 - Main Menu .. 20

Figure 4 - App Logo ... 20

Figure 5 – Downloading GeoJSON and drawing Paths on the map .. 21

Figure 6 – The Cycling Network with all paths drawn on the map ... 21

Figure 7 – Zoomed in display of some paths on the map ... 21

Figure 8 - Map Legend .. 21

Figure 9 - Traffic Cameras ... 22

Figure 10 - Only showing Red Light Cameras .. 22

Figure 11 - Only showing Traffic Cameras now .. 22

Figure 12 - Upon click of Red Light Camera .. 22

Figure 13 - Upon click on a Traffic Camera ... 22

Figure 14 - Rings & Posts ... 23

Figure 15 - All Traffic Incidents showing ... 24

Figure 16 - Clicking an incident marker... 24

Figure 17 - Clicking a construction marker ... 24

Figure 18 - Showing all the parking and carpool lots .. 25

Figure 19 - Upon clicking a carpool lot .. 25

Figure 20 - Upon clicking a parking lot marker ... 25

ii. List of Tables

Table 1 - Evaluation of Objectives ... 16

file:///I:/Studies/Honours%20Project/Final%20Report%20v1.3.docx%23_Toc427696130
file:///I:/Studies/Honours%20Project/Final%20Report%20v1.3.docx%23_Toc427696131
file:///I:/Studies/Honours%20Project/Final%20Report%20v1.3.docx%23_Toc427696135
file:///I:/Studies/Honours%20Project/Final%20Report%20v1.3.docx%23_Toc427696139
file:///I:/Studies/Honours%20Project/Final%20Report%20v1.3.docx%23_Toc427696140
file:///I:/Studies/Honours%20Project/Final%20Report%20v1.3.docx%23_Toc427696141

iii. Abstract

To address various problems faced by commuters, I have used data provided by Ottawa Open

Data to create an android application. I have focused on two such datasets pertaining to traffic and

cycling. There are a wide range of useful data available for both motorists and cyclists such as red light

traffic camera locations, traffic incidents (collisions) causing delays, road construction information,

parking & carpool lots locations & capacities, bicycle ring & post locations, and many more. Up to the

minutes screenshots from traffic cameras across Ottawa can be viewed at the touch of a button. All of

this information is neatly presented in an easy to use android application. If used, such information can

be of great assistance when commuting around the city or while visiting Ottawa as a tourist.

1. Introduction

1.1 Problem

 Nowadays, smartphones are a common entity among drivers and with the Ottawa Open Data

initiative, there is a potential to address a variety of problems faced by commuters in the city. If there is

a traffic jam or road/lane closures due to construction, you rely on roadside digital displays and

billboards to get updated information. If you live in the suburban areas of Ottawa, it would be beneficial

to know exactly where park and ride (carpool) lots located. If you are visiting Ottawa as a tourist, you

will need help in finding parking lots around the city. If you are a cyclist, then knowing which roads have

bike lanes is advantageous and searching for rings/posts is also a problem. All of these problems can be

mitigated by utilizing data provided by Ottawa Open Data.

The data addresses traffic related problems for everyday commuters by letting them know if

there are any traffic jams on their commute due to traffic incidents and alerts. It also assists new

travellers to the city by notifying them about construction events and parking lot locations around the

city. There is also data to help cyclists find rings/posts when they are wandering around the city. It also

solves another problem for cyclists by allowing them to see which roads have bike lanes, segregated

bike lanes, paved shoulders. This will allow cyclists to plan their route optimally using this information in

mind.

1.2 Motivation

 The data provided by the City of Ottawa is aimed towards helping citizens. By creating a mobile

application that pulls the updated data, it helps people to access it conveniently on the go when they

need it. Traffic data can assist users to make wise decisions for travelling within the city based on delays

caused by incidents or construction work. Cycling data would be ideal for people in the summers to find

the closest cycle rings and posts and also see which path is suitable for travel based on bike lanes data.

1.3 Goals

 My primary goal is to make efficient use of the provided data to assist people on the go.

 The mobile application should be able to display all traffic alerts (incidents, construction, special

events). This information should be displayed on top of Google maps (with traffic data enabled)

so that users can easily see if certain alerts are responsible for slow traffic.

 The application should provide traffic camera locations and associated images

 The application should also provide locations for red light camera locations, parking lots, part

and rides, cycling ring and posts

 For cycling network, the application should provide the cycling paths in the city on the map as

well as information for bike lanes, segregated bike lanes, paved shoulder, etc.

 If there is time, a special feature will be made for red light camera locations. If a user activates

detection of red light camera location, the application will monitor the GPS location and play a

sound when approaching a red light camera.

1.4 Objectives

 The mobile application will display traffic events on top of Google maps interface

 Traffic camera locations and associated images can be viewed through the application

 The application should also provide locations for red light camera locations, parking lots, park

and rides, cycling ring and posts

 For cycling network, the application should provide the cycling paths in the city on the map as

well as information for bike lanes, segregated bike lanes, paved shoulder, etc.

 Given enough time, red light camera detection will be implemented based on GPS location to

alert user with a sound

2. Background

The main purpose of this project for me was to gain experience using JAVA and more

specifically, android development. Coming from a background of web development, I wanted to see

what Android had to offer and hence I chose a project involved with Google Maps (an integral part of

android) and Ottawa Open Data APIs [1]. Open Data is a great initiative and the city of Ottawa has made

available a lot of interesting datasets for developers to consume. After going through various datasets

available through the Ottawa Open Data portal, what caught my eye was the amount of information

available pertaining to commuters. Surely, a mobile application which gives you real-time information

on traffic incidents, construction, parking lots, carpool lots, bicycle ring & posts locations would be

beneficial to a good subset of Ottawa residents and visitors. For me personally, working with various

different APIs would be a great experience to getting started with Android development.

After I had a rough idea of the datasets that I wanted to build the application on, I researched

other related traffic applications which might be similar to mine. After searching for “traffic” on Google

Play Store, I came across a couple of popular applications, one made for Utah and the other for

Malaysia. UDOT Traffic [2] application was built by Utah Department of Transportation to provide

commuters and travelers with information such as emergency alerts, road condition alerts, incidents,

special event alerts, construction alerts as well as lane closures and weather information. After using the

application, I got a few ideas on how to structure my proposed application. Firstly, by having alerts,

incidents, construction separately, it seemed to be a hassle for the user to use them all. I decided to

have my application be more user-friendly by displaying such related information together on the map

and giving the user the ability to filter out each specific item if they chose to do so. This approach would

result in lesser items in the main menu and hence less complex to navigate through. Also, having google

maps be on traffic mode was very user friendly as it allowed me to easily see which incidents and

construction was responsible for traffic jams. Traffic camera images were also incorporated in the

application but required the user to navigate away from the map activity to view it. A better user

experience would be to have the image be displayed as an alert or dialog on top of the map screen.

The other application I researched was MY-Traffic [3]. This application is labelled as a community

traffic monitoring system for Malaysian residents. It shows traffic incidents, road statistics, traffic

camera images, as well as a community-driven traffic incident system. This application had all traffic

related markers on the map together with no way to filter out specific ones, such as camera images or

incidents. Traffic camera images were included in the marker info window so the user didn’t have to

navigate away from the map at all. I wanted my application to be closer to MY-Traffic in the user

interface area since it seemed to be a much better experience then UDOT.

In terms of bicycle related data, I found an application called Warsaw Bike Path [4], which shows

the bike paths in the city, bike lanes, bike racks. It provided all this information using various different

colours on the map to show the paths. With the cycling network resource provided by Ottawa Open

Data, a similar type of information could be displayed for the city of Ottawa. For cyclists, this type of a

resource is very helpful when planning out a safe riding route around the city. The locations of bike racks

is also an invaluable resource as you don’t have to keep riding around the area in search of places to

stow your bike. The cycling network resources provided by Ottawa Open Data consisted of KMZ, SHP,

CSV, dwg, XML, and GeoJSON. The overall bike paths were conveyed only by KMZ, SHP, dwg and

GeoJSON as CSV only shows the type of paths and their lengths whereas the XML resource could not be

loaded due to a server error. After researching on each of KMZ, SHP, dwg and GeoJSON, I decided to go

with GeoJSON since it seemed to be the simplest option when it came to parsing. GeoJSON [5] is an open

standard format used to encode geographical features using Javascript Object Notation (JSON). After

going through the GeoJSON specification, it didn’t seem very difficult to create a parser and hence I

decided to parse it myself instead of using a library such as GeoTools [6].

Similarly, all other datasets that I would be using were in JSON format which can be handled

using Java’s JSON libraries. One of the datasets, related to bicycling, was in CSV format which is also

simple to parse without using any external libraries. Due to my limited exposure to Android and Java

programming, I wanted to rely less on external libraries and build stuff myself. I also had to research

Android features, such as network connectivity and application perimissions, using the Android User

Guides [7] to see how Android handled such stuff and the limitations imposed by it.

2.1 Project Scope

The main purpose of the proposed android application is to expose to the general audience the

variety of datasets available from Ottawa Open Data. Traffic datasets would be presented with a simple

interface on top of Google Maps so that users can easily explore the information. In addition to mapping

the traffic camera list provided by one of the datasets, there is also the ability to view up-to the minute

images from such cameras. Traffic delays caused all around Ottawa due to collisions, extreme weather,

etc. are neatly reported on top of a Google Maps interface which shows traffic congestion on the roads.

Hence, users can identify why certain traffic jams are caused by viewing the nearby traffic incidents,

construction or special events markers.

The software is also favorable towards bicyclists as it shows locations of bicycle ring & posts

around the city as well as specifying bike paths and bike lanes available. Parking lots as well as carpool

parking lots around the city can be viewed easily through the application.

3. Approach

3.1 Overview

 Since all datasets that I would be incorporating are aimed at commuters, it was a no brainer to

develop a mobile application which is readily available on smartphones, for people on the go. One of the

first things I considered was developing an intermediary web server between the mobile application and

the Ottawa open data APIs. It would be up to the web server to handle all incoming requests as well as

store the latest traffic camera images so that the application wouldn’t be restricted to Traffic Ottawa’s

limitation of use of their APIs. After weighing the pros and cons of a web server, I ultimately decided

against making one since it didn’t seem like it would be too beneficial. There were also legal

ramifications of storing traffic camera images on the web server without having explicit permission to do

so.

 For the mobile application, I wanted to keep the UI as simple as possible since this application is

aimed at commuters who would be using it on the go and as such require, a simple UI which they can

easily and quickly navigate. Also, all data had a location on the map so incorporating everything with

Google Maps was essential. To maximize the usefulness of the various APIs, I decided to group together

similar datasets and in the case of traffic related sets, Google Maps was set to show traffic mode to give

users a visual depiction of traffic problems alongside the data items.

3.2 Architecture and System Design

3.2.1 Overview

 This section provides the approach used to design the system and the overall architecture used

for the application.

3.2.2 High-Level Subsystem Decomposition

The high-level subsystem decomposition shows the major components of the system: models,

business logic, and activities.

Figure 1 - High-level Subsystem Diagram

The above figure shows the high-level subsystems in the system. Since there is only one layer in

the application, all of these subsystems exist on the same application layer.

3.2.3 Detailed Subsystem Decomposition

Figure 2- Detailed Subsystem Diagram

 The above diagram shows the different subsystems in the application and the components

within them. The models subsystem contains all the Java objects that are used throughout the

application and they resemble very closely to their associated JSON representation as received from the

open data APIs. The activities subsystem consists of the various activities in the application. Activities

are a mix on view and controller functionalities from the MVC design architecture [8] and hence keeping

separate views for each distinct group of dataset was necessary. To avoid code duplication, common

code between different activities was modularized and put under the business logic subsystem. The

business logic subsystem consists of the parsing and HTTP connectivity functionality which are utilized

by all activities in the system. Both these inner classes conform to different design patterns which are

discussed in the next section.

3.2.4 Application Architecture and Design decisions

 Instead of forcing a new architecture, I chose to stick with the default Android architecture

which loosely resembles a Model-View-Controller (MVC) approach. The benefits of MVC stem from the

fact that loosely coupled relations between each component (models, views, and controllers) allows for

a very modular approach of coding but Android does not incorporate a true MVC since Activities act

both as controllers and views. This decreases the coupling between views and controllers and degrades

the full benefits of MVC. Even though it may not be a true MVC architecture, it still results in neat

organization of the code, both physically and logically in the application itself.

Also, I chose to separate some of the business logic away from controllers to decrease the

coupling and make the system design more modular. Two major pieces of the system, the Parsing

subsystem and the HTTP connection subsystem, are both loosely coupled with the activities which

makes for more robust code. To implement the parsing subsystem, I used the Strategy design pattern [9].

Although only two strategies were needed for the complete system (CSV and JSON parsing), the strategy

design pattern allows us to easily add more strategies if the need arises. It makes for very loosely

coupled code and offers a great advantage for extensibility in the future versions of the application.

Adopting this design pattern offers us the flexibility of incorporating any type of API into the system.

Even if the API is a different format, other than CSV and JSON, it is easy to use the design pattern to add

more strategies to cover the new format. This makes the application much easier to maintain in the

future since any updates in the source API formats can be handled easily.

Whenever an android application is running, the foreground processing is done in the User

Interface (UI) thread. Since this thread deals with all the UI related stuff as well as listeners, it can

remain quite busy throughout the running time of the application. To make use of multiple threads,

android provides an AsynchTask [10] class which gives you access to non-UI threads to complete

processing intensive tasks or slow tasks such as network connections. The HTTPClient connection

subsystem is constructed to maximize the usage of Android’s built-in AsynchTask class. This means that

all network operations are carried out on background threads instead of the UI thread which makes the

application much more accessible and reliable for users. Since AsynchTask requires a context to an

Activity, there is some coupling between the two subsystems. Also, by using a delegation style callback

interface, our controller code remains in the activity subsystem, instead of the HTTPClient class, making

the coupling between activities and HTTPClient as low as possible.

The models hold all the data that we parse and process and it is used only during run-time. Since

this data needs to be kept updated, there is no persistent data management in the software design. I

considered a database design to assist this users’ needs but the processing overhead of synchronizing

local and remote data from the APIs would have been considerable, given the size of some of the APIs

that are used in the application. Data retrieved from the city of Ottawa servers is held temporarily using

the object model during the runtime of the application. This has the added benefit of not consuming a

lot of space on the user’s mobile phone as well as not wasting processing time to store the data into a

database or flat files. The drawback is that the application is not usable without an internet connection

which hardly seems like a drawback at all since this type of information is only beneficial in real-time.

4. Results/Validation

4.1 Evaluation of Project Proposal Objectives

To compare the results of the system, I will be evaluating each of the objectives that were

mentioned in the project proposal.

Objectives Evaluation

1) The mobile application will display traffic

events on top of Google maps interface

Successfully completed

All traffic events provided by Ottawa Open Data

were successfully integrated with the application.

2) Traffic camera locations and associated

images can be viewed through the

application

Successfully completed

A successful implementation of camera locations

and associated real-time images were

incorporated into the application.

3) The application should also provide

locations for red light camera locations,

parking lots, park and rides, cycling ring and

posts

Successfully completed

All mentioned items in the objective have been

successfully employed into the application.

4) For cycling network, the application

should provide the cycling paths in the city

Partially completed/few bugs & glitches

on the map as well as information for bike

lanes, segregated bike lanes, paved

shoulder, etc.

The sheer size of the cycling network data proved

to be bothersome and caused slowdowns in the

application. Explained in more detail below.

5) Given enough time, red light camera

detection will be implemented based on GPS

location to alert user with a sound

Not attempted due to not enough time remaining

This was an optional objective which would have

been pursued, given enough time, but

unfortunately there was no time remaining for it.

Table 1 - Evaluation of Objectives

4.1.1 Objective #1 Results/Evaluation

Objective: The mobile application will display traffic events on top of Google maps interface

This objective was set up so that a successful implementation of Google Maps along with the API

data can be used to show to the user a visual representation of all traffic events relative to their position

in the city. If somebody is residing in the east end of the city, then viewing traffic events for western

Ottawa are of little importance, hence the detection of the user’s current location allows to show

relevant traffic events quickly and without the hassle of extra zooming around the city.

4.1.2 Objective #2 Results/Evaluation

Objective: Traffic camera locations and associated images can be viewed through the

application

 The dataset provided a list of traffic cameras around the city and Traffic Ottawa has an API

which allows to see the real-time traffic camera image. Access to this resource intensive API requires

signing up and declaring the intended usage of the API. The usage of the API has the ability to designate

a user ID which meant that each different installation of this application required a distinct user id when

requesting traffic images. After researching a way to get some sort of a unique phone ID, I didn’t find an

exact answer since the corresponding android function “Secure.ANDROID_ID” is sometimes not

implemented properly by third-party smartphone manufacturers (such as Motorola, Samsung, etc)

which meant the same android_id being returned for every phone. After researching on a workaround, I

stumbled across an answer on stack overflow by Joe [11] which suggested the use of several different IDs,

together with a hashing function. This approach seemed like it would work on almost all android phones

hence I went along with it. The actual traffic image is shown briefly as a toast notification (built-in

android temporary notification on screen) so that the user does not have to needlessly interact with it

again to close the image and open another one.

4.1.3 Objective #3 Results/Evaluation

Objective: The application should also provide locations for red light camera locations, parking

lots, park and rides, cycling ring and posts

 All the different datasets mentioned in the objective were implemented in various activities

throughout the application. I grouped similar datasets together hence red light camera locations are

accessed alongside traffic camera information and so on for other datasets as well. Being able to identify

your current location on the map and find the nearest parking lot or the nearest cycling post can be

easily achieved hence this objective is completed successfully.

4.1.4 Objective #4 Results/Evaluation

Objective: For cycling network, the application should provide the cycling paths in the city on the

map as well as information for bike lanes, segregated bike lanes, paved shoulder, etc.

 The cycling network objective was meant to show the user all the different cycling paths in the

city. There was also enough information present in the given API to distinguish between bike lanes,

segregated bike lanes, paved shoulder. It would have been an invaluable tool for cyclists all over the city.

 Despite the many different formats available to consume the data, the limitation of developing

for the Android Google Maps API meant that only a few of the formats were feasible. It came down to

KML and GeoJSON in the end and despite the Javascript Google Maps API having the ability to load KML

files, there is no such equivalent feature for the Android Google Maps API. The choice left was to parse

either the KML or the GeoJSON myself and I went with GeoJSON.

 After completing the parsing of the GeoJSON file and drawing the route paths on the google

maps using Polylines, it was very much apparent that speed was going to be an issue. Parsing the

GeoJSON itself was fast but the polyline function of Google Maps to draw every path took its toll on

processing speed as well as the RAM of the mobile phone (application started to hang if too many

routes were drawn on the map). The paths itself were correctly drawn on the map but the slothfulness

of the drawing paths and the sluggishness of the UI meant that the cycling network isn’t really usable

right now. It is not apparent if this sluggishness is due to limitations of the polyline function in Google

Maps or due to the sheer number of the paths that need to be drawn on the map.

 To improve this situation, reviewing the algorithm of drawing paths for possible improvements

would be a start. Another possible direction to explore would be to give KML a try to see if it might be

parsed faster with Google maps. Due to lack of time available to spend on the project, I couldn’t explore

these options.

4.1.5 Objective #5 Results/Evaluation

Objective: Given enough time, red light camera detection will be implemented based on GPS

location to alert user with a sound

 This optional objective wasn’t reached due to the difficulty encountered with the bicycle cycling

network. Had the cycling network functionality not met with numerous glitches, there might have been

time to tackle this objective to implement a red light camera detection based on the users location and

checking if they are approaching a red light camera. It would have been a fun exercise but unfortunately

there wasn’t time to work on it.

4.2 Results/Self-Evaluation of Application

 This project culminated with the creation of an android application. The application can be

installed on most smartphones running the android operating system and since there are no services

nor a local database, it doesn’t bog your phone down at all. Meeting most of the objectives means the

overall project can be considered successful.

 Since I had no background in android development, I had to learn everything through the

android docs and by experimenting myself. My background in using PHP frameworks tailored towards

MVC patterns such as CodeIgniter [12], definitely helped to get a grasp on how things are done in

android. The various Java libraries means that you don’t have to reinvent the wheel yourself every time.

The usage of an AMD processor computer also stifled my progress somewhat since only Intel CPUs

support Intel Hardware Accelerated Execution Manager (HAXM) [13] which meant that I couldn’t use the

built-in emulator of Android Studio. Instead, I had to rely on an external emulator such as Genymotion

[14] as well as using USB debugging with my actual smartphone.

4.3 Validation & Application Screens

Once the OttawaTraffic application is copied over to the phone, you

can install it after accepting the permissions it requires. It requires the

following permissions:

 Internet

 Access Network State

 Read Phone State

 Read GServices (use of Google Maps requires google play services to be

enabled on the phone)

 Access Coarse Location

 Access Fine Location

The OttawaTraffic application has no user registration nor any synching

mechanism with an intermediary web server hence when you open the application,

you are taken straight to the main menu. I grouped together similar datasets so that

the menu isn’t cramped with a lot of different items. Similar items such as traffic

construction, traffic incidents and special events are grouped under the same heading of traffic

incidents. Similarly parking lots and park and ride (carpool) lots are under the same heading. This makes

it so that the user isn’t overwhelmed by all the different options present in the application. Making the

application more professional looking or stylish wasn’t a priority but if it were then a loading splash

screen as well as stylized buttons would be the first improvements.

Figure 4 - App Logo

Figure 3 - Main Menu

Figure 5 – Downloading GeoJSON
and drawing Paths on the map

Figure 6 – The Cycling Network with all paths
drawn on the map

Figure 7 – Zoomed in display of some
paths on the map

 The bicycle network downloads approximately a 4.5MB GeoJSON file

when it is opened. After it is completely downloaded, the parsing begins

and polylines are drawn on the map. Depending on the type of path being

drawn, the polyline color is changed. A map legend button in the corner

shows the user an alert dialog so they can see exactly which colors

correspond to which features on the map. Zooming in close on the map

allows you to see exactly where the routes go to. As discussed in section

4.1.4, there is a sluggishness when using polylines in Google Maps. I am not

sure if it is due to the sheer amount of polylines drawn on the map or

problems with my algorithm but the cycling network is not fully functional at the moment. It takes more

than an hour to draw all 6920 features on the map and the Google Maps itself becomes very

unresponsive and slow as a result. I have the code restricted to show only the first 200 features as of

now so that it can be viewed and tested. Improvements to the code base or the use of an alternative

algorithm to draw the paths on the map might result in better speeds.

Figure 8 - Map Legend

Figure 9 - Traffic Cameras

Figure 10 - Only showing Red Light Cameras

Figure 11 - Only showing Traffic
Cameras now

The Traffic Cameras activity handles the display of all CCTV traffic cameras and red light camera

locations. The checkboxes allow the user to filter out which items are showed on the map. By default,

when this view is opened, both checkboxes are checked so that all items are shown on the map. The

custom marker images on the map make it easy to differentiate between the normal traffic cameras and

red light cameras.

 If you click a red light camera marker,

you will see the name of the intersection

that it is located at. This data is provided

by the API and not calculated manually. On

the other hand, a click on a normal traffic

camera displays a toast notification with a

custom view. The custom view uses an

ImageView element to show the traffic

camera image on the screen. The location

of the intersection is displayed above the

Figure 12 - Upon click of Red
Light Camera

Figure 13 - Upon click on a
Traffic Camera

camera image so that the user knows which intersection is being displayed. As is the nature of toast

notifications, after a few seconds the notification automatically disappears without user input. This

makes it easy for the users to view multiple camera images in quick succession. Some cameras are

operated by the Ministry of Transportation (MTO) and their title indicates this. The majority of cameras

are city cameras though hence there is no indication of a city camera within the title. Based on the

restriction imposed by Ottawa Traffic, the images can only be accessed every 60 seconds.

 The bicycle ring and posts section shows all ring and posts locations

around the city. Although the majority of the locations are based in and

around the downtown area. A custom marker image of a bicycle is used to

go along with the kind of data that is shown on the map. Upon clicking a

bicycle, the user is shown the address that the ring/post is adjacent to in

the title of the popup dialog. Although not present for every ring/post,

some also have a description which tells you exactly which street the

ring/post is located on. I could definitely see this information being

valuable to a number of cyclists in the summer months so that they can

easily identify where ring/posts are located. The two bottom right icons,

automatically created by Google Maps when a marker is clicked, allow the user to either open the

specific marker location in a stand-alone Google Maps application or to get directions to the location.

Figure 14 - Rings & Posts

Figure 15 - All Traffic Incidents
showing

Figure 16 - Clicking an incident marker

Figure 17 - Clicking a construction
marker

The above three screenshots of the application show the gist of the traffic incidents page. The

traffic incidents view allows the user to view 3 key traffic related information: traffic incidents,

construction, and special events. The triangle marker identifies a construction element whereas an

exclamation marker is for traffic incidents and lastly, a blue star shows special events. Due to it being

summer, the map is dominated by construction markers all around and clicking one of them will show

you the details as well as any lane closure information associated with the work. Similarly, clicking a

traffic incident shows you the details in a popup window on the map. It has to be noted that the popup

window uses a custom info window contents so that the message is not stripped off at the end. Since

construction messages tend to be longer, it was necessary to implement this so that the user is able to

read the whole message quickly. During the course of the project, I wasn’t able to see any special events

being popped up but the specs of the API on the Ottawa Traffic website made it possible to implement

it.

Figure 18 - Showing all the parking and
carpool lots

Figure 19 - Upon clicking a carpool lot

Figure 20 - Upon clicking a parking lot
marker

The above images show the working of the parking section of the application. It shows the

custom marker locations for both parking lots and park and ride lots. Clicking on either marker shows

you the exact address of the parking lot as well as the capacity information in the message. Nothing

complex here but if the API in the future is able to update the status of the parking lots (percentage

filled) then it could be very useful in the busy summer months. Also, this data can benefit both Ottawa

residents and travelers as any venture into the downtown area results in the search of parking lot

locations nearby. Having this application handy can save a few minutes of browsing around as well as

money saved in gas bill.

5. Conclusion

 To evaluate myself based on my work on this project, I think I did an okay job. Having never

worked with Android before and having used Java only in a few university courses, I think I coped well

with the added workload. Completing almost all the proposal objectives successfully supports this claim.

This is not to say that I don’t regret certain parts of the project. Firstly, I should have adhered much

more strictly to the deadlines and reported to the supervisor on time. Also, had I been able to dedicate

more time on the project and estimate the workload correctly, I would have been able to meet the

timelines and possibly worked on the optional objective I set out for myself.

 Regarding the application itself, I am pleased with the final outcome as it sets out nicely and

achieves what I intended it to. To be more content with my work, I would have liked to have the cycling

network work flawlessly as well, but I didn’t anticipate the slowdowns that I experienced in Google

Maps. The optional objective that I set for myself was also interesting and I regret not having enough

time to work on it. Lastly, the user interface could have been constructed more nicely to make the

application more user-friendly and pleasing for the eyes.

5.1 Future Work

 There are a number of ways to improve upon this application. Some of the most obvious ones

are:

1. Improve the Bicycle Cycling Network in terms of both speed and usability. The initial download

time cannot be improved but the actual drawing of the paths as well as the overall performance

can be greatly improved.

2. Make the application bilingual (since the source APIs make this possible) and have a default

language selectable by users. Since a lot of French speaking people from the neighboring

Quebec province visit Ottawa, having bilingual feature could be put to good use.

3. Red Light camera detection to alert user when approaching a red light camera.

4. Improve User Interface to make it a more stylish and sleek design. The visual representation of

an application has a great influence on how the application is perceived by users. So a nice

design and modern graphics can be used to improve the look of the application.

5. Implement a client-side database to store the model data so that users can access data when

offline (would be useful for some datasets such as parking lots, cycling network, etc.)

6. Software & Resources Utilized

Over the course of the project, there are many resources that I utilized and relied on. Some

resources below, like Stack Overflow and Android Developer Guide, were accessed many times

throughout the project with multiple pages accessed in total.

1. Android Developer Guides - https://developer.android.com/guide/index.html

2. Google Maps Android API - https://developers.google.com/maps/documentation/android/intro

3. Open Data Ottawa - http://data.ottawa.ca/

4. Ottawa Traffic Open Data API - http://traffic.ottawa.ca/map/opendata_info

5. Wikipedia (for Design Patterns among several other topics) -

https://en.wikipedia.org/wiki/Design_Patterns

6. Stack Overflow for various Android/JAVA coding questions/reviews - http://stackoverflow.com/

7. Genymotion – https://www.genymotion.com/#!/

8. Draw.io – To make subsystem diagrams - https://www.draw.io/

9. Microsoft Word – To make project report

10. Android Studio – To make Android project

7. References

[1] OpenData Ottawa. (2015). Retrieved from OpenData Ottawa: http://data.ottawa.ca/

[2] UDOT Traffic - Android Apps on Google Play. (2015). Retrieved from Google Play Store:

https://play.google.com/store/apps/details?id=com.transcore.android.commuterLink&hl=en

[3] MY-Traffic - Android Apps on Google Play. (2015). Retrieved from Google Play Store:

https://play.google.com/store/apps/details?id=com.fazlimnor.mytraffic&hl=en

[4] Warsaw Bike Path - Android Apps on Google Play. (2015). Retrieved from Google Play Store:

https://play.google.com/store/apps/details?id=pl.wtopolski.android.warsawbikepath&hl=en

[5] GeoJSON. (2015). Retrieved from GeoJSON: http://geojson.org/

[6] GeoTools The Open Source Java GIS Toolkit. (2015). Retrieved from GeoTools: http://geotools.org/

[7] Introduction to Android. (2015). Retrieved from Android Developers:

http://developer.android.com/guide/index.html

[8] Model–view–controller. (2015). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Model-

view-controller

[9] Strategy pattern. (2015). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Strategy_pattern

[10] AsynchTask. (2015). Retrieved from Android Developers:

http://developer.android.com/reference/android/os/AsyncTask.html

[11] java - Is there a unique Android device ID?. (2014). Retrieved from Stack Overflow:

http://stackoverflow.com/questions/2785485/is-there-a-unique-android-device-id

[12] CodeIgniter Web Framework. (2015). Retrieved from CodeIgniter: http://www.codeigniter.com/

[13] Android* - Intel® Hardware Accelerated Execution Manager. (2015). Retrieved from Intel Developer

Zone: https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager

[14] Genymotion. (2015). Retrieved from Genymotion: https://www.genymotion.com/#!/

https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-controller
http://stackoverflow.com/questions/2785485/is-there-a-unique-android-device-id

